收藏本站   设为首页
当前位置:国际标准化动态 > IEC > 正文

连接印刷电子产品和可穿戴产品社区 ---可穿戴设备将得益于印刷电子技术的进步

发布时间: 2017-12-27 10:33:10   审校:睿智   浏览次数:
来源:http://iecetech.org/issue/2017-05/Connecting-the-printed-electronics-and-wearables-communities  

印刷电子作为一种制造方法已经涉足多个领域,遍及电工世界。在新一代的可穿戴电子设备中, 这种连接尤为重要。虽然一些可穿戴的应用完全可以使用常规的刚性电子器件来实现,但是许多都需要一些柔性的元素。IEC技术委员会(TCs)和分技术委员会(SCs)的标准化工作是这一发展的核心。

一、印刷电子遍及生活

印刷正在成为一种制造技术,适用于生产各种尺寸、规模的设备。该技术已经从印刷油墨设备(如办公打印机[1])转移成为电工元件制造的储备工具。这是因为印刷技术使得工业在广泛的领域生产设备和结构成为可能,同时在印刷过程中也可进行卷处理(请参阅电子技术问题06/2016的印刷电子遍及生活)。

此功能得以实现的一个例子就是光伏(PV)设备的生产。印刷电子是制造这些设备的支持技术之一(参见电子技术问题08/2016中光伏支持技术)。在这种应用中,它特别适用于丝网印刷的导电底板,如今也正在扩展到其它功能层。

这种扩展反映在其他电工应用中,最显着的是显示和照明。在这种情况下,导电底板的功能可以应用于制造触摸屏电极,这样,印刷电子与IEC TC 110的工作就连接起来了:电子显示设备随着技术的进步,这些印刷技术正在打开一个又一个新的制造机遇,从阻挡层的沉积和彩色面版的印刷到电磁屏蔽的3D印刷,都有印刷电子的身影。这项工作涉及IEC TC 106制定的标准:用于评估与人体接触的电、磁和电磁场的方法。

IEC TC 119:印刷电子开始出现在连接装置生产领域,最近出版的IEC 62899-502-1:2017印刷电子第502-1部分质量评估——有机发光二极管(OLED)元件——在柔性基板上形成的OLED元件的机械应力测试。为此,IEC 62899-501-1将研究故障模式以及柔性和/或可弯曲的主电池或二次电池的机械测试。 

二、与其他社区联系

一些行业团体对柔性电子相当感兴趣,并且与IEC内的工作有着密切的联系。例如,在2016年法兰克福大会上,有机电子协会(OE-A)与IEC TC 119举行了一次欧洲会议,借此两个社区的成员能够连接和分享专业知识。

OE-A和IEC TC 119在印刷电子工业化方面有着共同利益,但其协同作用比这更广泛。OE-A早已被证明是国际柔性电子标准的积极支持者,并且在最近的发生的事件中,它在议程中预留了更多时间给IEC工作组,以介绍IEC社区内相关工作。随着我们将这些技术推向更广泛的共同点,如物联网(IoT)、印刷传感器、柔性混合的可穿戴电子,这一联盟就显得尤为重要。

物联网的应用技术是吸引多方工业利益的一个很好的例子。它也是印刷电子技术的巨大机会。广域传感器阵列尤其可能为物联网系统提供外部输入接口。在这方面,与ISO/IEC JTC 1/SC 41的联系:物联网和相关技术很有可能变得越来越重要。我们可以共同努力,为未来的电子产品解决方案的新形式因素进行标准化。 

三、柔性、可弯曲、可滚动、可延展

从柔性基板开始,印刷和其他薄膜沉积技术为电子产品带来了新形式因素的可能性。这已经制定成IEC 62899-201:2016印刷电子第201部分:材料——基板标准。这只是柔性电子器件工业化的一部分,在这里必须了解混合电子的概念。

在这篇文章中,混合是指印刷和“常规”(硅基)电子器件的结合。混合可能是迈向柔性电子的中期路线,允许连接的社区将成熟的硅基电子设备功能与柔性基板相结合。IEC TC 119和IEC TC 91的工作之间存在协同作用:电子组装技术,特别是两个小组探索混合(刚性和柔性)电工组件。2016年法兰克福大会是一次很好的机会,让我们共同合作,指导工作达成共识。

IEC 其他技术委员会也正在着手支持柔性电子。例如,IEC TC 47:半导体器件近期发布的IEC 62951-1:2017半导体器件——柔性和可延展半导体器件第1部分柔性基板导电薄膜的弯曲试验方法,本系列其他文档也会对此进行研究。由于显示器已经采用柔性、可弯曲、可滚动的设计,因此IEC TC 110已经出版了IEC 62715系列柔性显示设备的标准。

随着我们迈向更广泛的应用程序套件,其他参数也需要标准化。例如,电子技术文章中描述阻挡层对光伏、显示和照明技术都很重要。随着这些过渡到柔性基板,这些柔性阻挡层的测试方法也将变得重要,目前正在由IEC TC 47研究IEC 62951-7

可延展电子带来新的机遇,但同时也带来新的挑战。这一领域的标准化工作已经开始,特别是对于符合IEC 62899-201-2标准的可延展基板的评估方法。这是IEC社区的一个重要领域,因为它为可穿戴电子设备中提供了新的机遇。 

四、把可穿戴产品提上IEC议程

2016年法兰克福大会上,在许多方面,IEC议程中可穿戴产品的比例增加了。在IEC TC 119会议上,标准文件已经取得进展,以支持印刷可穿戴电子产品。然而,最显着的进展是IEC标准化管理局(SMB)决定为可穿戴电子产品建立了一个新的技术委员会,即IEC TC 124:可穿戴电子设备和技术。普遍认为这个技术领域越来越重要,尤其是在保健、健康和医疗领域。

可穿戴设备领域(参见电子技术问题01/2016的可穿戴的未来)被认为未来将产生重要影响,而且是连接社区必不可少的另一个例子。这是一个许多IEC技术委员会工作重叠的领域,因此,开放联络对于确保这项工作顺利进展至关重要。纺织电子是一个扩展的领域。作为未来功能性服装的组成部分,它很可能代表了可穿戴设备的早期应用领域,因此将成为标准化的首要领域。

虽然IEC TC 124工作尚未完成,但标准化工作已在IEC内开始。IEC TR 62899-250:2016印刷电子——第250部分:用于穿戴式智能设备的印刷电子所需的材料技术,为IEC TC 124的基板区域设定奠定了基础。 

五、展望

相关领域开始围绕IEC TC 124进行合并。除了IEC技术委员会的名单外,信息安全和数据隐私咨询委员会(ACSEC)以及IEC生活系统委员会(IEC SyC AAL)的专业知识也很可能相当重要。这看起来肯定是IEC的一个增长领域。

印刷电子有可能成为许多应用领域的启动技术。

IEC TC 119通过其工作组和全体会议继续探索这些机会。

[1]国际标准办公室打印机是由ISO/IEC JTC 1/SC 28开发的:办公设备是分技术委员会(SC),由IEC技术委员会与国际标准化组织(ISO)联合组成。

 

Connecting the printed electronics and wearables communities

Wearable devices will benefit from advances in printed electronics technologies

Printed electronics as a manufacturing method has become established in a number of areas across the electrotechnical world. The connections that are made are emerging as particularly significant in the new generation of wearable electronic devices. Although some wearable applications can be realized using wholly conventional rigid electronics, many will require some element of flexibility. Standardization work by a number of IEC Technical Committees (TCs) and subcommittees (SCs) is central to this development.

Motion tracking with elbow and wrist sensors (Photo: Fraunhofer ISIT)

Printed electronics anywhere

Printing is becoming a fabrication technique applicable to the manufacturing of devices on a variety of scales. The technology has moved on from printing ink in devices such as office printers [1] to become a deposition tool for electrotechnical component manufacture. This is because printing techniques allow industry to produce devices and structures over a wide area with printing processes that are also open to roll-to-roll processing (see Printing electronics anywhere in e-tech issue 06/2016).

A current example of this capability is provided in the production of photovoltaic (PV) devices. Printed electronics is one of the supporting technologies for the manufacture of these devices (see Supporting technologies for photovoltaics in e-tech issue 08/2016). In this application, it is particularly suited to the screen printing of the conductive backplane but this is now expanding into other functional layers.

This expansion is mirrored in other electrotechnical applications, most notably in display and lighting. The conductive backplane capability in this case finds application in the fabrication of touch screen edge electrodes, bringing to printed electronics a connection with work from IEC TC 110: Electronic display devices. As techniques advance, these printing techniques are developing into further manufacturing opportunities, from the deposition of barrier layers and printing of coloured bezels to 3D printing of electromagnetic screening. The work involves Standards developed by IEC TC 106: Methods for the assessment of electric, magnetic and electromagnetic fields associated with human exposure.

IEC TC 119: Printed electronics, is beginning to work on these areas of connected-to-device production, starting with the recent publication of IEC 62899-502-1:2017Printed electronics – Part 502-1: Quality assessment – Organic light emitting diode (OLED) elements – Mechanical stress testing of OLED elements formed on flexible substrates. To follow this, IEC 62899-501-1 will look at failure modes and the mechanical testing of flexible and/or bendable primary or secondary cells. 

Connecting with other communities

Flexible electronics is of substantial interest to some industry bodies and forms a strong connection with the work within the IEC. For example, at the 2016 Frankfurt General Meeting, the Organic Electronics Association (OE-A) held a European gathering, concurrent with IEC TC 119, which enabled members of both communities to connect and share expertise.

The OE-A and IEC TC 119 have common interests in the industrialization of printed electronics but the synergy is wider than this. The OE-A has proved to be an active supporter of International Standards for flexible electronics and at recent events it has given space in its agenda for presentations on the relevant work within the IEC community, as well as meeting space for IEC working groups at its conferences. This alliance is of particular importance as we move these technologies onto further common ground such as the internet of things (IoT), printed sensors and flexible, hybrid and wearable electronics.

The IoT is a good example of a cluster of technologies that is attracting widespread industrial interest. It also represents a substantial opportunity for printed electronics technologies. Wide area sensor arrays in particular look likely to provide the external input interface to IoT systems. In this respect the link with ISO/IEC JTC 1/SC 41: Internet of things and related technologies, is likely to become important. Working together we can look to standardize some of the new form factors for future IoT electronics solutions. 

Flexible, bendable, rollable, stretchable

Printing and other thin film deposition techniques bring forward the possibility of new form factors for electronics, starting with flexible substrates. This has now been standardized as IEC 62899-201:2016,  Printed electronics – Part 201: Materials – Substrates. This represents only a part of the story towards the industrialization of flexible electronic devices and the concept of hybrid electronics must be introduced here.

In this context, hybrid means the combination of printed and “conventional” (silicon-based) electronics. Hybrid is probably the medium-term route to flexible electronics, allowing linked communities to combine the capabilities of mature silicon-based electronics with flexible substrates. Here there is synergy between the work of IEC TC 119 and of IEC TC 91: Electronics assembly technology, particularly as both groups explore hybrid (rigid plus flexible) electrotechnical assemblies. The 2016 Frankfurt General Meeting was a great opportunity to meet together to guide our work into this common ground.

Other IEC TCs are working to support flexible electronics too. For example, IEC TC 47: Semiconductor devices, has recently published IEC 62951-1:2017Semiconductor devices – Flexible and stretchable semiconductor devices – Part 1: Bending test method for conductive thin films on flexible substrates, and is working on other documents in this series. And as displays are already adopting flexible, bendable and rollable formats, IEC TC 110 has published the IEC 62715 series of standards on flexible display devices.

As we move forward into a wider suite of applications, other parameters will require standardization. As an example, the barrier layers described in an e-tech article are important for photovoltaic, display and lighting technologies. As these transition into flexible substrates, the test methods for these flexible barriers will also become important and are currently being worked on by IEC TC 47 as IEC 62951-7.

The progression into stretchable electronics brings with it new opportunities but also new challenges. Standardization work has commenced in this area, notably with evaluation methods for stretchable substrates as IEC 62899-201-2. This is an important area for the IEC community as it presents new opportunities in wearable electronic devices. 

Bringing forward the wearables agenda within the IEC

The 2016 Frankfurt General Meeting was notable in a number of ways in bringing forward the wearables agenda within the IEC. In the IEC TC 119 meetings, progress was made on Standards documents to support printed wearable electronics. However, the most significant advances came at IEC Standardization Management Board (SMB) level with the resolution to create a new TC for wearable electronic devices that became IEC TC 124: Wearable electronic devices and technologies. This technical area is seen to be gaining in importance, especially in the fields of wellness, health and medicine.

The wearable devices sphere (see The wearable future in e-tech issue 01/2016) has been noted as important for the future and is another example where connecting communities will be essential. This is an area where work from many IEC TCs overlaps and as a result, open liaison will be essential to ensure this work progresses. Textile-based electronics is an area set to expand. As an integral part of future functionally-enabled clothing, it is likely to represent an early application area of wearable devices and will thus be a prime area for standardization.

Although IEC TC 124 has yet to meet, standardization work has already commenced within the IEC. IEC TR 62899-250:2016 Printed electronics – Part 250: Material technologies required in printed electronics for wearable smart devices, is a contribution that sets the scene for the substrate area of IEC TC 124. 

Looking forward

The relevant communities are beginning to coalesce around IEC TC 124. In addition to the list of IEC TCs, the expertise of the Advisory Committee on information security and data privacy (ACSEC), and of the IEC Systems Committee on active assisted living, IEC SyC AAL, are likely to be of importance. This looks certain to be a growth area for the IEC.

Printed electronics has the potential to be an enabling technology for a number of applications areas.

IEC TC 119 continues to explore these opportunities through its working groups and plenary meetings.

[1] International Standards for office printers are developed by ISO/IEC JTC 1/SC 28: Office equipment, a subcommittee (SC) of the joint technical committee formed by the IEC and the International Organization for Standardization (ISO)

京ICP备09001239号
网站管理:国家标准化管理委员会标准信息中心
地址:北京海淀区马甸东路9号 邮编:100088 邮箱:info@sac.gov.cn
客服热线:010-82261056 QQ号:3433774297